This part of ISO 17294 specifies a method for the determination of the elements aluminium, antimony,
arsenic, barium, beryllium, bismuth, boron, cadmium, caesium, calcium, cerium, chromium, cobalt,
copper, dysprosium, erbium, gadolinium, gallium, germanium, gold, hafnium, holmium, indium, iridium,
iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, mercury, molybdenum, neodymium,
nickel, palladium, phosphorus, platinum, potassium, praseodymium, rubidium, rhenium, rhodium,
ruthenium, samarium, scandium, selenium, silver, sodium, strontium, terbium, tellurium, thorium,
thallium, thulium, tin, tungsten, uranium and its isotopes, vanadium, yttrium, ytterbium, zinc and
zirconium in water (for example, drinking water, surface water, ground water, waste water and eluates).
Taking into account the specific and additionally occurring interferences, these elements can also be
determined in digests of water, sludges and sediments (for example, digests of water as described in
ISO 15587-1 or ISO 15587-2).
The working range depends on the matrix and the interferences encountered. In drinking water and
relatively unpolluted waters, the limit of quantification (xLQ) lies between 0,002 μg/l and 1,0 μg/l for
most elements (see Table 1). The working range typically covers concentrations between several pg/l
and mg/l depending on the element and pre-defined requirements.
The quantification limits of most elements are affected by blank contamination and depend
predominantly on the laboratory air-handling facilities available on the purity of reagents and the
cleanliness of glassware.
The lower limit of quantification is higher in cases where the determination suffers from interferences
(see Clause 5) or memory effects (see ISO 17294-1:2004, 8.2).